
‘Games devised by
_ FredHarris ©

i Programming Consultant _
; _ Richard Freeman

| ‘THEBASICLISTINGS |
| forthe Acorn Electron and
! ~ Sinclair Spectrum computers
I | | oe fe

. 2 al vy
Project supported by Acorn Computers PAcorn Yorkshire Television

—

Dear Microphile

Computing is frustrating, time-consuming, irritating, bewildering, and great fun.

There’s more satisfaction to be had from developing your own twenty-line BASIC

program than from adding a few more megazaps to your latest arcade game score.

Me & My Micro is aimed at the relative (or absolute!) newcomer to programming.

It’s one way of getting to grips with the micro, by writing simple games. Not that |

think games-writing is the ultimate goal of every aspiring programmer — it just happens

to be the way | went about tackling BASIC.

Once you can tackle BASIC on your own, you can do your own tax returns,

solve second-order differential equations, anything you like. But first, you need to

get to grips with your micro to find out how to think to make it work.

What you won't find in this booklet are the most exciting and fast-moving games

around. In fact, they are all relatively slow and simple. But what you will find is the

detail of how each one is put together. Not only have we used simple games; we

have also chosen to use ‘structured programs’ to make them easier to understand

— that is, each program consists of a sequence of self-contained blocks, located away

from the main body of the program. The idea of this is to keep everything as clutter-

free and readable as possible — unlike ‘spaghetti’ programs, they should also be easier

to ‘de-bug’. It’s by no means the only way of doing things, and structure is no

guarantee of elegance — or indeed a working program! But it might help.

Whatever style of programming you adopt, don’t be afraid to experiment.

The games in the series were deliberately chosen to be easy to alter, improve,

extend and transform. There are suggestions in these listings and on the TV show.

But try out ideas of your own. Whatever happens, you can’t damage the micro from

the keyboard!

Happy creative computing

FRED HARRIS

P.S. Alternative versions of these listings are available for the Commodore 64, Vic

20, Dragon, Oric, Atari, Sharp 700, and MTX.

If you wish to obtain the above listings please send £1 — including P & P— to:

Computer Training College

Norvic House

1—7 Hilton Street

Manchester M4 1LP

P.P.S.The Electron programs will also run on the BBC micro.

Electron Programs
MONSTERZAP CORE

ee ee ee ee ae OCONAUUD = Sul'sosoovuvescs

REM MONSTERZAP
REM CORE LISTING
REM Copyright Fred Harris
REM Electron edition: Richard Freeman

MODE 6

REM Initialise
GOSUB 1000

REM Draw scene

GOSUB 3000

REM Main movement loop
REPEAT

FOR c=0 TO 39
PRINT TAB(c,r) "*";—Q)
FOR t=@ TO delay NEXT t~&—5)
LET key$=INKEYS$(O)

Main

program

IF key$S="f" OR key$="F" THEN GOSUB 5000
PRINT? TABCC, PFE Ws
NEXT c oid

UNTIL FALSE ~<——®)

*FX12,0
STOP

REM Initialise
2 oe ee

LET f=0
LET delay=25 Initialise

subroutine REM Turn off keyboard auto repeat

<«—_— *FX11,0
RETURN

REM Draw scene
PRINT TAB(®@,10) " HH HH HH HH HH HH”

Peemt [hete,112 "HR NS WEY FP OREN OS CRN? RAY 7 B®

PRINT TAB(@,12) " HH O*0 HH O*0 HH O*0 HH O*0O HH O*O HH "

PRINT TAB(@,13) " HH =&= HH =8&= HH =8&= HH =&= HH =&= HH "
PRINT TAB(®,18) "@ SHOTS USED"

RETURN

REM Zap Draw scene FOR lL=10 T0 13. ©
PRINT TAB(c,l) ""
NEXT L

LET f=f+1<—_@®
PRINT TAB(O,18);f
IF f=40 THEN STOP
RETURN

subroutine

Zap subroutine

Monsterzap Core (Notes)
1. LET r= 5 makes the zapper run across row 5 of your screen (i.e. six lines

down). Change this to position the zapper higher or lower than as written in

our listing.

2. LET delay = 25 controls the pause between zaps. To slow the program down,

set ‘delay’ to a larger value. To speed it up, try a smaller value. (The Electron

computer runs at a slower speed than the BBC Micro so you will need a smaller

value for ‘delay’ on the Electron than on the BBC.)

3. *FX11,0 controls one of the BBC and Electron micro’s special effects. It

turns off the keyboard ‘auto-repeat’. i.e. it re-sets the keyboard so that, on

pressing a key, only one character per key press appears on the screen even

when the key is held down. To cancel *FX11,0, use *FX12,0.

4. ‘c’ stands for column. In this loop, varying c moves the zapper across the

screen in row 5. |

5. FOR t=0 TO delay : NEXT t is the simplest way of producing a pause but

the length of delay cannot be predicted in advance. If you want to produce a

delay of exactly n seconds, you should use

TIME =0
REPEAT

UNTIL TIME = n*100

6. INKEY$ (0) takes a keystroke from the keyboard — if there happens to be

one. Unlike ‘INPUT’, INKEY$ (0) does not wa/t for input. If no key is pressed,

INKEY$ (0) allows the program to move on to the next statement. The number

in brackets relates to the length of time the computer waits for a key press.

7. This line ensures that the zap routine (lines 5000 to 6010) is only used when

the F key is pressed.

8. See page 31 for the note on REPEAT loops.

9. This innocent semi-colon is very important on the BBC/Electron. Without it,

the print cursor jumps to the next line when the print line is finished. This

will either make your display scroll up the screen or leave an ugly flashing

cursor somewhere on your screen.

10. This prints a space, so acting as an electronic rubber. Any object overprinted

with this is wiped out and replaced by the background colour.

11. f counts the number of zaps that you have used. After each zap, the value of

f is increased by 1.

Variables Used
Controls the column in which the zapper is printed. Cc column

r row The row in which the zapper appears.

t time Counter for the delay loop.

f fire The number of zaps used.

delay Controls the length of the delay.

| line Counter for the zap loop.

Suggestions f tending th 2030 INPUT "" d ggestions for extending the program pit ey « ®

See ‘Monsterzap improved’. 2070 RETURN

2080
MONSTERZAP IMPROVED 2990 REM Draw scene

3000 REM Sky
18 REM MONSTERZAP IMPROVED 3005 COLOUR 131
20 REM Copyright Fred Harris 3010 FOR n=0 TO 18 pep ele ast ekkcoeURy jieennlpeagheniecelie
25 REM Electron edition: Richard Freeman 3020 PRINT TAB(O,n) " i
3@ MODE 1 3030 NEXT n
35 3035
40 REM Initialise | 3050 REM Ground
50 GOSUB 1000 3055 COLOUR 130
60 3060 FOR n=1 TO 3
7® REM Instructions 3070 PRINT TAB(O,n+18) " 7
80 GOSUB 2000 3080 NEXT n
90 3090

100 REM Draw scene 3095 REM Stars
110 GOSUB 3000 3100 GCOL 0,1
120 3105 FOR n=1 TO 50
150 REM Main movement Loop 3110 PLOT 69,RND(1200) ,550+RND (300) <7)
133° REPEAT 3120 NEXT n
157 COLOUR 131 3125 COLOUR 1
160 FOR c=@ TO 39 3140
170 PRINT TAB(c,r) CHRS 225;~<—&) 3160 REM Skyscrapers
180 FOR t=@ TO 100 : NEXT t 3162 COLOUR 128
185 LET key$=INKEY$(0) 3164 COLOUR 2
187 *FX15,0 4 3170 FOR n=0 TO 5
190 IF key$="f" OR key$="F" THEN GOSUB 5000 3180 FOR lL=14 TO 18
200 RRS ones) 3190 PRINT TABC7*n4+1,1l) CHRS226 CHRS$226

210 NEXT c 3200 NEXT L
220 UNTIL FALSE 3320 NEXT n
230 3322
235 *FX12,0 3325 REM Monsters
240 STOP 3327 COLOUR 131
250 3329 COLOUR 1
990 REM Initialise 3340 FOR n=@ TO 4

1000 LET r=3 3360 PRINT TABC/*«n+3q t6de0" \ /mtl
TOFS VOU (237224 2557231 23597291 p255;, 2345255 5255°°: 3370 PRINT TAB(7*n4+3,17) " O'" CHRS$224 "QO"
REM Part of monster 3380 PRINT TABC(7*n+3,18) " " CHR$224 " " CHR$224 "_"
1020 VDU 23,225,129,219,165,153,153,165,219,129 : 3390 NEXT n
REM Zapper<——_{2) 3400 COLOUR @

1030 VDU 23,226,36,0,36,255,0,0,0,0 : 3410 PRINT TAB(®,22) "@® SHOTS USED"
REM Part of building —@) 3420 RETURN
Teo VOU’ 25 227 Oto e ees toyota os: 3430
REM Dead monster fragment 4990 REM Fire
1036 VDU 23,1,0;0;0;0; 5000 FOR lL=14 TO 18

184 COLOUR” 128 a = aaa 1055 REM T BSE” Ai 1a28 aie off keyboard auto repeat 5030 PRINT TAB(c.l) "Xx" bes

1070 LET f=@ 5040 Phie:. ThECE,t)" ™

1080 RETURN 5050 NEXT Ll
1090 5060 PRINT TAB(c,18) CHRS 227

ro 5080 LET f=f+1
5090 PRINT TAB(O,22); f "“MONST 5

Bere RAr 5100 IF f=40 THEN STOP

1990 REM Instr on

3)
5) "PRE " 2 RESS F TO FIRE 5p BEL t ci

0)

uct
2000 PRINT TAB(15
2010 PRINT TAB(12

so "ONLY 4@ SHOTS!"
(4, "PRESS RETURN WHEN YOU ARE READY"

2015 PRINT TAB
2@20 PRINT TAB

4

ee a eee eee ae

Monsterzap Improved (Notes) 6. This is a gap of 40 spaces. A neater way of doing this is STRING$ (40, ”’ ”’).
1—4 These lines create special characters (called User Defined Graphics*) using 7 Lines 3105 to 3120 scatter 50 stars about the heavens.

the VDU 23 statement. Any character with an ASCII code between 224 and PLOT 69 produces a dot on the screen when you are using a graphics mode.

255 can be re-programmed in this way. Here, we've chosen to use: The full statement must include the position of the dot on the screen in graphics

224 as EE (Part of a monster) coordinates e.g. PLOT 69, 600, 500 prints a dot near the centre of the screen.

FC 8a & The loop at lines 3180 to 3200 draws six skyscrapers, evenly spaced across

225as ted (The zapper) 8b _— the screen; the loop at 3340 to 3390 then draws five monsters between the

buildings. This saves an awful lot of typing.

9. INPUT ” “ d halts the program until the player presses a key. Here ‘d’ is a

227 as at (A dead monster fragment) dummy variable i.e. the program doesn’t use whatever value d has, but we

must have a variable in the INPUT statement. CLS (line 2060) clears the screen

after a key is pressed, removing the instructions before the skyscraper scene

226 as tii = (Part of a building)

As an example, here is how we created the zapper:

(a) Draw it as blobs on an 8 x 8 grid.
is drawn.

Column numbers 10. This SOUND statement produces a firing noise each time the zap button is

126 @4.327 16-8. 4. 2.9 pressed.

11. These three characters whiz down the screen from the zapper, giving the

appearance of a bomb dropping. Note that the last character to be printed is

Fah sles a space. This makes the bomb appear to drop down the screen.

Forwards and backwards

The Monsterzap (Spectrum version) which you will have seen on television has a

zapper which moves left/right then right/left across the screen. This is harder to

implement in BBC BASIC but you can do it by changing lines 160 and 210 to

160 FOR | = —39 TO 39
(b) For each row, add up the column numbers of the blocked in columns. 210 NEXT |

Bae and adding a new line

165 c= ABS |

(ABS gives the positive value of a number i.e. ABS 3 is 3 and ABS —3 is also 3.)

e.g. row 3

(c) Put all your row numbers into a VDU 23 statement:

Your row totals

Colour

VDU 23, 225, 129, 219, 165, 153, 153, 165, 219, 129 We have introduced colour into this game. In mode 1, we have four colours for

. foreground (buildings, bombs, etc.) and four for background (sky, earth, water,

The character number which is to be etc.). These are controlled by colour statements:
your new character.

5. Once you have defined a special character, you use it by preceding it with Foreground background
CHRg¢. e.g. to print the zapper, write PRINT CHR$225:. (Note the semi-colon Colour Graphics Text Graphics Text

again at the end of the line.) Black GCOLO,0 COLOUR O GCOLO,128 COLOUR 128

Red GCOLO,1 COLOUR 1 GCOLO,129 COLOUR 129
* For more information on these, see BBC Microcomputer System User Guide pp 170—176 or Yellow GCOLO,2 COLOUR 2 GCOLO,130 COLOUR 130

SRI NT White | GCOLO3 COLOUR3 GCOLO,131 COLOUR 131

a

So, you can see that in the program, we have used:

1040 COLOUR 128

3005 COLOUR 131 (Sky)

3055 COLOUR 130

3100 GCOLO,1 (Stars)
3162 COLOUR 128

Black background (text)

White background (text)

Yellow background (text)

Red foreground (graphics)

Black background (text)

(Ground)

3164 COLOUR 2 (Skyscrapers) Yellow foreground (text)

3327 COLOUR 130 Yellow background (text)

3329 COLOUR 1 (Monsters) Red foreground (text)

3400 COLOUR O (Message) Black foreground (text)

Suggestions for improvement

a. Arrange for a bomb to drop from the zapper towards the monsters.

b. Build in a time limit.

S At the end of the game, arrange for the whole cycle to start again at a higher

speed.

d. Build in a penalty for hitting the buildings.

e. Or change line 190 to prevent firing when the zapper’s over a building.

t. Allow the player to reverse the direction of the zapper. (e.g. Press RETURN

to reverse the direction of movement.) Then make the monsters fire back!

g. As the game progresses, lower the zapper’s flight row. If the player doesn’t

zap all the monsters by the time the zapper hits the buildings, he loses.

h. Make an explosion appear on the screen when a monster is hit.

i. Add a deep beep for hitting a wall.

QUACMAN

10 REM QUACMAN
20 REM Copyright Fred Harris
25 REM Electron version: Richard Freeman
30
35 MODE 5
36
4@ REM Initialise and draw maze
50 GOSUB 1000
60
7@ REM Make first hole
8@ GOSUB 2000
90

10@ REM Repeat until Quacman through maze Main
110
120 REM Move Quacman schl aseib
130 GOSUB 3000
140 IF c<18 THEN GOTO 130
150
155 PRINT TABC(18,r) "Q"
160 PRINT TAB(O,29) "Time taken=";timecount <—@)
170 <«—_(1)
18@ END

ee)

190
200
210
220
230
990

1000
1010
1020
1030
1040
1050
1055
1060
1070
1990
2000
2010
2020
2030
2040
2990
3000
3005
3010
3020
3030
3035
3040
3050
3060
3070
3080
3090

REM *x*k*k¥kkKkKKkK END KK¥KKKKKKK

REM ***x** SUBROUTINES ***xx

REM Initialise
LET timecount=0 <—)
LET r=0

LET c=0
FOR n=1 TO 20

PRINT "4 144 4 9 4 4 4 "<—4)
NEXT n

COLOUR 129
RETURN

Initialise

subroutine

Hole punching

subroutine
REM Make a hole
IF c>16 THEN RETURN

LET h=RND(20)-1

PRINT TABCc+1,h) " ";

RETURN

REM Move

PRINT TABC(c,r) "Q" Movement

SOUND tT 1641 es | subroutine + — 6
FOR t=1 TO 25 : NEXTt <—@®
LET timecount=timecount+1 <&—2)
PRINT, TABLG 262. fa>>:
LET key$=INKEY$(5) <—®)
IF key$="X" AND r=h THEN LET c=cte
IF key$="/" THEN LET r=r+1
IF key$=":" THEN LET r=r-1
IF r<®@ THEN LET r=0
IF r>2@ THEN LET r=20

RETURN

GOSUB a

Quacman (Notes)

1-3 These three lines provide a crude timecounter for the program. Each time the

program repeats GOSUB 3000, one is added to timecount. The count at the

end of the run provides an estimate of your speed, but not a measure of real

time. If you would like a real timecounter in the program, you can use TIME:

(a) Change 1000 to 1000 TIME = O. This sets the computer’s timer to zero.

(Immediately after TIME = 0 is executed, TIME starts to increase again

at 100 units per second.)

(b) Remove line 3020.
(c) Replace line 160 with 160 PRINT TAB (0,29) ’’Time taken ="; TIME/

100’’seconds’’. Note that TIME has to be divided by 100 to give the

time in seconds. (TIME is what is called a ‘pseudo-variable’ — see your

User Guide for more details.)

We've used a simple maze wall made from the | character. If you would like a

more solid wall, you can create the special character [J using the method
described in ‘Monsterzap improved’. To make, say, CH R$224 into MM, add

1025 VDU 23, 224, 255,255,255,255,255,255,255,255

and change line 1040 to

1040 PRINT TAB(O0,n) a "CH R$224"’ "CH R$224”
" um”

CHR$224” "CHR$224” "CHR$224” "CHR$224” ”
CH R$224” Ad ey R$224"’ "CH R$224” ”

5. This repeats GOSUB 3000 (the move routine) until the Quacman has got

through the maze. A more elegant method of writing these lines, if you know

how to use REPEAT, is

REPEAT

GOSUB 3000

UNTIL c>= 18

6. Make a beep. If you don’t like the sound, experiment a bit until you find one

that you like. (The last two numbers in the SOUND statement are the ones

to alter.)

7. Another delay loop. 3

8. This makes the program wait for five hundredths of a second to see whether

a key is pressed.

9. Line 3040 moves our ‘OQ’ two columns to the right (i.e. into the next empty

column), but only if the ‘X’ key is being pressed and the ‘OQ’ is opposite the

hole.

We've used key ‘X’ for ‘move right’, key ’/’ for move down or ’:’ for move up.

You may prefer to use others.

10. These two lines make sure that the Quacman doesn’t jump out of the top

or bottom of the maze. The technique used here is a common trick in pro-

gramming:

IF <variable exceeds limit> THEN <variable = limit>

11. Here we have used END to halt the program. STOP and END are almost

identical in that they both halt a program. Additionally STOP displays the

message ‘STOP at line. . .. whereas END does not display a message.

Suggestions for improvement

a. Build in a time limit for getting through.

b. Delete line 3030 and see what happens. How could he leave (webbed) foot-

prints?

C; Make two holes appear in each wall.

d. Then randomly introduce obstacles that delay Quacman’s progress.

e Change the ‘Q’ to a user defined figure.

f Give the Quacman an energy quota at the start of the game. Then make the

energy run down with passing time. Scatter energy capsules which, if eaten,

replace the energy. (If you don’t know anything about arrays, you may find

10

it difficult to scatter energy capsules. In that case put them all at a known

place e.g. at the tops and bottoms of the columns.)

Make something chase the Quacman.

Put in a monster or two. >

ANAGRAMS 100

10 REM ANAGRAMS 100
20 REM Copyright Fred Harris
25 REM Electron version: Richard Freeman

40 INPUT a$

50 LET c$=a$

70 FOR m=1 TO 100
80 GOSUB 2000 : REM Shuffle

100 PRINT j$
110 LET a$=c$
120 NEXT m
130
140 STOP
150

1900 REM Shuffle
1980 REM ***** SUBROUTINE **xx*x
2000 LET j$=""
2010 FOR k=1 TO LEN c$
2020 LET L=LEN a$
2030 LET n=RNDCL)
2040 LET jS$=j$+MIDSCa,n,1)
2050 LET aS=LEFTCa,n-—1)+RIGHTS$(a$,l-—n)
2060 NEXT k
2070 RETURN

Anagrams 100 (Notes)

Anagrams

The single anagram program can be produced from ANAGRAMS 100 by omitting

lines 70, 110 and 120.

How the shuffle routine works

The routine takes letters out of a word and builds a new, shuffled, word out of

them. We use

a$ Word to be shuffled

| Length of a$
i$ New, shuffled word (= ’” at start)
n Position of letter to be picked out of a$.

N.B. Each time we pick a letter out of a$, af becomes one letter shorter.

11

—

The routine is best understood by an example:

Word to be shuffled

Select a letter at random

Pick the letter out with

MID$

Add the picked letter to j$

Take the left part of the old word

Take the right part of the

old word

Join the left and right parts

Repeat if a$ is not yet empty.

RANDOM

e.g. letter 4 (i.e. ““‘D’’)

MID$ (a$,n,1)
picks out ““D”’

i$ = j$ + “D"
i.e. j6 =D"

LEFT$ (a$,n—1) (i.e. ““RAN”)
RIGHT$ (a$,l —n) (i.e. ““OM”)

a$ = “RAN” + “OM”

MID$ (a$,n,1)

LEFT$ (a$,n—1) {
X

Suggestions for improvement

RIGHT$ (a$,|—n)
SE.

ult: eile nl cadtigul allt dealt eel aaltesd tlt <aliats ‘ath eclitielalad, VINNMOSSVFLFNGBONUVUOVUSL WSS

MODE 1

REM Initialise
GOSUB 1000

REM Choose first card
REPEAT

GOSUB 2000
LET firstguess=1

REM Show card
GOSUB 3000

REM Choose second
REPEAT

GOSUB 2000

LET ni=n

card

UNTIL 1<>firstguess

REM Show card
GOSUB 3000

LET guess=guess+1

FOR t=1 TO delay NEXT t

REM Check for match
GOSUB 4000

IF match=1 THEN GOSUB 5000

REM If cards do not match
IF match=@ THEN GOSUB 6000

COLOUR 2
PRINT TAB(14,19)
PRINT TAB(14,20)

UNTIL score=10

TR PE Ra ihe
| e+ ORES =>

LET m1=m

guess
score

a. Try turning this program into a two player version, in which the first player

chooses a word and the second has to guess it one letter at a time.

b. When solving crosswords, you usually know where some of the letters are.

How could this be incorporated into the program?

: Usually you are told that your anagram solution will have, say, 3 words and

the number of letters in each word. Allow the user to enter both the original

anagram and the number of words in the solution and the number of letters

in each word. Then adjust the program so that all solutions have the correct

format for the solution.

(Hint: the shuffle routine will need to remove all ‘spaces’ from the shuffled

word.)

d. Improve the screen layout to present 10 anagrams at a time neatly placed on

the screen with a ‘Press SPACE BAR for more’ displayed at the bottom.

MATCH

10 REM MATCH
15 REM Electron version: Richard Freeman
20 REM Copyright Fred Harris
30 REM One player version
40

12

POR: ZF 1:°FOrg5

END
REM KkkKKKKKKK END KKKKKKKK

REM ****x*x SUBROUTINES *xxx*

REM Initialise routine
REM

LET guess=0
LET score=0
KET a$=""AABBCCDDEEFFGGHHIIJJ"4—@)
Let, iss""
LET delay=2500 <1)

REM Shuffle

FOR k=1 TO 20 <——-@®

SOUND 1,-10,7%*z,3
NEXT z

13

—_ -2§ -2 -2 92 2 .-2 -2 2 >) 2 —_—_ = == = 2 = = = = -2 => — Dd WBHOONAULWNH-—& UISSeoCcqsecsec vi

5000

LET L=LEN a$

LET n=RNDCL)

LET j$=j$+M1ID$(Ca$,n,1)
LET

NEXT k

REM Display backs
FOR n=0 TO 4

FOR m=0 TO 3

PRINT TAB(C3*n+11,3*m+5);

NEXT m

NEXT n
RETURN

REM Choose a card
COLOUR 3
REPEAT

REPEAT

PRINT TAB(O,22)

INPUT TAB(@,22)

i=INT 1

UNT

aS=LEFT$(Ca$,n-1)+RIGHTS$(a$,l-—n)

c$=MID$(j$,1,1)
UNTIL c$<>"_"

PRINT TAB(O,22) "
LET m=INTCC1-1)/5)
LET n=

RETURN
1-5*m-1

REM Showcard

c$=
c$=
c$=
c$=
c$=
c$=
c$=
c$=
c$= Sn Mon ian ie Ae Bae Boe Bee Bee Be "neh nn en oH

c$="A" THEN
nee at tee

"D" THEN
Ze” “THEN
vee. FASS
"G" THEN
on he a |
wi Fee
owe OE HEN

LET
Let
LET
Lee
eS
EEF
Sy
Se
Le*
LET

nr) >,,
1

+ - 3,
IL i>=1 AND i<=20 <—@

REM Find chosen card

X$a—-—"

X$="/\"
X$="C]"
X$S="0"
X$="da"
XSe" XK"
¥Ga"sn™

Aes
yge"=- “

X$="00"
PRINT TAB(C3*n+11,3*m+5) x$
PRINT TAB(3*n+11,3*m+6) y$
RETURN

REM Check for match
LET ma

IF MID$(j$,firstguess,1)=MID$(j$,1,1) THEN LET match
RETURN

tch=0

REM If cards do match
LET j}S=LEFTSCjS$,firstguess—1)4+"—"+RIGHTSEC;S AEN -} S—

firstguess)
LET JAS=LEFTSC ISTP" + RIGHTS C}3:,LEN “73-1
LET score=score+t1
FOR z=53 TO 63

5010
5020
5030
5040
5050
5060

14

SOUND 1,-10,2*5,1
NEXT

RETURN
Z

n+5*m+1

LET y$="--"

LET yo=""r"
LES ys=".l"

LET yse"1rre
LET y$="aa"
LER yon ae
LET y$Sa"xx"

LET y$=")(¢"
LET y -fte--t

LET y$="00"

COLOUR
COLOUR
COLOUR
COLOUR
COLOUR
COLOUR
COLOUR
COLOUR
COLOUR
COLOUR AH WN HWM WN

8)

= 1

5070
5990
6000
6010
6020
6025
6040
6050
6060
6070
6080

REM If cards do not match
FOR z= T5 TO? STER$1
SOUND 1,-10,75,1

NEXT
COLOUR 2
PRINT TAB(3*n14+11,3*m1+5); firstguess
PRINT TAB(3*n14+11,3*m1+6) " "
PRINT TAB(3*n411,3%m+5);7; 7" "
PRINT TAB(3*n+11,3*m+6) " "
RETURN

Match (Notes)

(For a note on the maths of this program, see the notes on the Spectrum version.)

1. ‘delay’ controls how long the cards are displayed for after an incorrect guess.

Increase ‘delay’ if you want them displayed for a longer period of time.

These are the labels for the cards before they are shuffled.

The input routine has to be fairly complex because it has to do four things:

3a. Wipe out any previous input display.

3b. Ensure that only whole numbers are entered. There are many ways of

doing this. The one that we have used here is

INPUT i

i=INTi

3c. Make sure that the whole number is between 1 and 20.

3d. c$ is the name we give to the letter that stands for the chosen card —

that is letter number i in j$. Lines 5000 to 5010 replace each paired

letter with “‘_"’. This stops you choosing a card that is already matched.

Notice also, that the loop at lines 137—150 (4) is also checking the input since

we have to check that the second card chosen is not the same as the first card.

Take in a number

Change it to a whole number

Flags are used for sending information from one part of a program to another.

Here the flag ‘match’ is set to O before we check for a match. If a match is

found, ‘match’ is set to 1. ‘match’ is then used to direct the program to the

right choice of subroutine.

This is the line where the program checks for a match by comparing the two

letters which correspond to the two MID$. Remember that the computer

doesn’t care about the pictures.

Lines 1050—1105 are the shuffle routine from ANAGRAMS 100.

The player enters the number of the card that he wants to turn over (1 to 20).

Line 2022 finds which letter that card is by selecting it from j$.

Suggestions for improvement

a.
b.

Develop user defined characters for the cards.

How could this be changed to a two player version, or even to a version for

younger children (remember you will have to simplify the INPUT routine).

15

FIND THE NUMBERS

ee ee ee ee en ee OONAKAAURWD = So ev"veos

REM FIND THE NUMBERS
REM Copyright Fred Harris
REM Electron version: Richard Freeman

MODE 6

REM Initialise
GOSUB 1000

REM Shufflenumber
GOSUB 2000

LET m$=LEFT$(j$,4)

REM Instructions
GOSUB 3008

REPEAT

LET ok=9 <1)
REM Enter guess
GOSUB 4000

REM Mark guess
GOSUB 5000

UNTIL ok<>@

REM Result
GOSUB 6000

END

REM KkkkKKKKKK END kkkKKKKKK

REM ***x**x SUBROUTINES ***x*x

REM Initialise
LET guess=0
LET a$="1234567890''
LET c$=a$
CLS
RETURN

REM Shuffle
LET j$=""

FOR k=1 TO LEN c$
LET L=LEN a$
LET n=RNDCL)
LET jS$=j$+MIDCa,n,1)
LET aS=LEFT$(Ca$,n-1)+RIGHTS$(aS, l-n-1)
NEXT k

RETURN

REM Instructions
PRINT "YOU MUST GUESS THE CODE By"
PRINT "ENTERING A FOUR DIGIT NUMBER"

3020 PRINT "(®@ TO 9)"
3030 PRINT:PRINT "I WILL MARK AS FOLLOWS:"
3040 PRINT "* MEANS A NUMBER IN WRONG PLACE"
3050 PRINT "+ MEANS A NUMBER IN RIGHT PLACE"
306@ PRINT TAB(O,15) "PRESS A KEY WHEN YOU ARE READY."
3070 dS$=INKEY$(1000)
308@ CLS
3090 RETURN
3100
3990 REM Enter guess
4000 REPEAT

4005 INPUT TAB(6,3+guess) g$
4010 IF LEN g$<>4 THEN PRINT TAB(6,3+guess) "A FOUR DIGIT
NUMBER":FOR t=1 TO 100@:NEXT t
4012 PRINT TAB(@,3+guess) " "7
4015 UNTIL LEN g$=4
4020 LET guess=guesstt
4030 PRINT TAB(6,2+guess) g$

4040 PRINT TAB(15,2+guess);
405@ RETURN
4060
4990 REM Mark
5000 FOR n=1 TO 4
5010 IF MID$(g$,n,1)=MIDS(m$,n,1) THEN PRINT eg Ths

5020 NEXT n
5030 PRINT TAB(19,
5040 FOR n=1 TO 4

2+guess);

5050 FOR m=1 TO 4) enn
5060 IF MID$(g$,n,1)=MID$(m$,m,1) AND n<>m THEN PRINT "x";
5070 NEXT m
5080 NEXT n
5090 IF g$=m$ THEN LET ok=1
510@ RETURN
5110
5900 REM Result
6000 FOR n=1 TO 15
6010 SOUND 1,-10,5*n,1
6020 NEXT n
6030 PRINT TAB(®@,20) "GOT IT IN ";guess
6040 RETURN

Find the Numbers (Notes)

1. Here ‘ok’ is a flag. As long as ok is 0, the GUESS and MARK GUESS loop

(lines 150 to 230) is repeated. But, if the player gets the right answer, the

mark routine sets ok to 1 (line 5090). This then allows exit from the repeat

loop at line 230 so bringing the result into action (line 260).

2. This repeat loop is designed to ensure that the player enters a four character

guess. You can’t escape from it until your input has the right length. It is an

example of a very common input method of the form:

REPEAT

Input

UNTIL <input satisfies program criteria>

Ly;

3—5 The marking routine is a bit tricky.

First (3) we have to print a ‘+’ for each correct digit in the correct place in

the guess.

Then (4) we have to search for correct digits in incorrect places and print a

‘*" each time we find one. Notice ‘ANDn <>m/’ (5) which makes sure that we

don't print a ‘*’ where a correct digit is in its correct place.

Suggested improvements

a. Make it possible to vary the difficulty of the game by making the number of

digits in the number to be guessed a variable.

b. Produce a simple version for children with four coloured objects instead of

digits.

Cc. Add a timer.

d. Improve the screen layout to include instructions at the bottom of the screen,

a heading and a more interesting display of the guesses and responses.

18

Spectrum Programs
MONSTERZAP CORE

10REMMONSTERZAP
12 REMCORE LISTING

2@REM©FreduHarris
30
4MREMInitialise
5@G0 SUB 1000
60
Q®REMDrawscene
0GO SUB 3000

REMMainmovement Loop
FOR c=31T0-31 STEP -1<—_)

0
0

0 Main
..- PRINPATE,€7°2"
0
4)

FOR t=0T05: NEXT t «——_() gies
IF INKEY$="f" OR INKEYS="F" THEN GO SUB 5000

Ge: FPRIGT ATT ,cs.""
210 NEXT c
220G0T0160: REMrepeat main loop
230
240STOP
250
99OREMInitialise ey

1000 LET r=0 Initialise
107@ LET f=@ subroutine

1080 RETURN

1090
299@REM Draw
3000 PRINT AT

3010@PRINT AT

3020 PRINT AT t
t

"4H HH HH HH HH "
"HH \ / HH \ / HH \ / HH \ sun”
"HHO @® OHHO @ OHHO @ OHHO @OHH"
"HH =e HH me HH == HH == HH"

7"'@ SHOTS USED"

Draw scene

subroutine
i Le 0)

303@PRINTA
3410PRINTA
3420 RETURN
4990REM Fire
5000 FOR L=10TO 13
5060 ~ PRINT AT 1,¢;""
5@50 NEXT lL
5080 LET f=f+1
5090 PRINT AT 18,0; f
6000 IF f=40 THEN STOP
6010 RETURN
6020

x

scen
10,0;
11,0;
12,0;
15,0;
18,0;

Zap

subroutine

Monsterzap Core (notes)

i FOR t = 0 TO 5: NEXT t is the simplest way of inserting a delay into a

program. For a longer delay, increase 5; for a shorter delay, decrease it.

2. ‘c’ stands for column. In this loop, varying c moves the zapper back and forth

across the top line of the screen.

19

x. INKEY$ takes a single keystroke from the keyboard — if there happens to be

one. Unlike ‘INPUT’, INKEY$ does not wa/t for input. If no key is pressed,

INKEY$ allows the program to move on to the next line. The total effect of

this line is to ensure that the fire routine (line 5000) is only brought into
action when ‘F’ or ‘f’ is pressed.

Suggestions for extending the program

See ‘Monsterzap improved’.

MONSTERZAP IMPROVED

10 REM MONSTERZAP IMPROVED
12 REM VERSION 2
20 REM © Fred Harris

40 REM Initialise
5@ GO SUB 1000

7®@ REM Instructions
80 GO SUB 2000

0®@ REM Draw scene
GO SUB 3000 10

20
5@ REM Main movement loop
60 FOR n=31 TO -31 STEP -1
70 PRINT AT O6,n; “mi"
80 FOR t=@ TO 5: NEXT t

90 IF INKEYS="f" OR INKEYS="F" THEN GO SUB 5000
200 PRInT- AT 8,”
210 NEXT n

220 GO TO 160: REM repeat main Loop

240 STOP

99@ REM Initialise
1000 FOR n=@ TO 31
1010 READ g
1020 POKE USR "a"+n,g
1030 NEXT n
1040 INK @
1050 BORDER 5: PAPER 5

1070 LET f=0
1080 RETURN

1998 REM Instructions
2000 PRINT AT 3,7:" MONSTERZAP"
2010 PRINT AT tele PReae , fF TO FIREN- AT 6,7;"—-ONLY 40 SHOTS!"
2050 PAUSE 100
2060 CLS
2070 RETURN

2990 REM Draw scene

REM Ground
FOR n=@ TO 14

PRINT PAPER 5;" <8)"
NEXT n

REM Sky and stars
FOR n=1 TO 3

PRINT PAPER 4;" q————___@)—____ '"
NEXT n

FOR n=1 TO 50
PLOT INK 7;RND*250,RND*70+80 <—@)

NEXT n

REM Skyscraper
FOR n=@ TO 4

FOR lL=10 TO 14
PRINT AT L,7*n+1; INK1; "i"
NEXT lL

IF n=4 THEN GO TO 3410

REM Monsters

INK ®O: PAPER 8
PRINT AT 12,feuros\ / ™

PRINT AT TS; fee” ©. TRAVERSE 71;"0";> INVERSE 6;
u i] "re INVERSE t3 a bi INVERSE 0; i

PRINT AT 14, 8frs;"
NEXT n

INK 2
PRINT AT 18,0;"@ SHOTS USED"

RETURN
REM Fire
REM Hit
FOR L=1@ TO 13
BEEP ..8@2,26%1
PRINT AT i,n;3 "3"
PRINT AY Uwe” nis
PRINT: ARYA mn". "
NEXT L

Paaenwt wt 18,2 INK 6&3" i”
BEEP .04+.4*(CATTR (1L,n)=41),0-20*CATTR (CL,n)=41)
LET f=f+1
PRINT AT 18,0; f
IF f=40 THEN STOP
RETURN

DATA: 22d cfd eesti 6S belo est ai stadetio
DATA 129,219,169 ,135,195,165,129,36
DATA 36,0,36,255,0,0,0,0
DATA 0,0,0,0,0,133,137,255

Monsterzap Improved (Notes)

1&2 These lines are used to set up the special characters used by this program.

21

22

These are:

Graphics ‘a’ as EB

Graphics ‘b’ as ig

Graphics ‘c’ as

Graphics ‘d’ as) ws

As an example, here is how we created the zapper:

(a)

(b)

(c)

(d)

(e)

Draw it as blobs on an 8 x 8 grid:

Column numbers

ie Wee Oa. Se ae ee Se

Row 3 &

Number the columns, working right to /Jeft, as 1,2, 4, 8, 16, 32, 64 and

128 as in the figure above.

For each row, add up the column numbers of the blocks done in columns.

e.g. row 3 128:% 32 + i a ee

oe es
Put these row numbers into data statements in your program. (i.e. 8

numbers per special character.)

Then make your program read the characters and poke them into a

graphics letter location. ‘Poke’ is to put anumber into amemory location

of a computer. In this case we want to place the eight numbers 129,

219, 165, 153, 153, 165, 219 and 129 into the area of memory where

the computer stores user defined graphics. We don’t need to know where

this is, the user statement (followed by the letter we have chosen for

our character) automatically uses the right area of memory. Here we

make graphics ‘b’ into the zapper:

e.g.
1 REMHowtocreatea special character

10 FORi=@TO7
2@ READA
3@ POKEUSR “"a''+i,n

4.

40 NEXT i
45 PRINT "="
5@ STOP
6@ DATA 255,0,255,0,255,0,255,0

would set up graphics ‘a’ as the special character.

To place the character into line 45, type as follows:

45 PRINT” (as usual)

Hold down SHIFT and press GRAPHICS. You should now get the

G cursor.

Press the letter a.

Hold down SHIFT and press GRAPHICS. This will cancel graphics.

Hold down SYMBOL SHIFT and press ”’.

These are strings of 32 spaces. They are used to print a strip right across the

screen of the current colour e.g. a strip of sky.

This loop plots 50 dots (stars) at random locations.

Suggestions for improvement

a.

b.

S.

Arrange for a bomb to fire from the zapper towards the monsters.

Build in a time limit.

At the end of the game, arrange for the whole cycle to start again at a higher

speed.

Build in a penalty for hitting the buildings. Make an explosion appear on the

screen when a monster is hit. Add a deep beep for hitting a wall.

Allow the player to reverse the direction of the zapper. (e.g. Press ENTER to

reverse the direction of movement.) Then make the monsters fire back!

QUACMAN IMPROVED

(This program is an extension of the Quacman program shown in the television

series. It is basically the same program but with sound and colour added.)

QUACMAN IMPROVED
REM © Fred Harris

REM Initialise
GOSUB 1000

REM Make first hole
GO SUB 2000

23

hl aS th nh od od oh oh ek eli Sowonnuuwukrwn-& Se ocqx9yNys oqovueoosss

REM Repeat until done

REM Move racer
GO SUB 3000
IF c<31 THEN GOTO 130

PRINT AT h,31;"Q"
PRINT AT 21,0; FLASH 1;"TIME TAKEN="; timecount ——@)

STOP

REM *k®¥k¥kkKKKKK END KA4KKKKKKK

REM *****x SUBROUTINES **x*xx

REM Initialise
LET timecount=® ——))
LET r=0

LET c=0

FOR n=1 TO 20
PRINT " me BBB Reese s'
NEXT n

RETURN

REM Make a hole

Suggestions for improvement

See Electron suggestions.

ANAGRAMS CORE

10 REM ANAGRAMS
20 REM © Fred Harris
30
40 INPUT a$

80 GO SUB 2000 : REM Shuffle word
100 PRINT j$

198 STOP

199®@ REM Shuffle word
2000 LET j$=""
2010 FOR k=1 TO LEN a$

2020 LET L=LEN a$
2030 LET n=INT CRND*L)+1

2040 LET j$=j$ta$(n)
2050 LET a$=a$C TO n-1)+aS(nt+1 TO)
2060 NEXT k 2000 IF c>31 THEN RETURN

2010 LET h=INT CRND*20) 2070 RETURN

2020 PRINT AT h,c+1;" "
2a RETURN ANAGRAMS 100

coon Sat Werte ho dia 10 REM ANAGRAMS 100
7 20 REM Fred H

3010 BEEP .@2,20-ABS (r-h) 30 ee
3020 LET timecount=timecount+1——®) 4Q@ INPUT a$
3030 PRINT AT r,c; PAPER 6;" " 5@ LET c$=a$
3040 IF INKEY$="8" AND r=h THEN LET c=c+2 : GO SUB 2000 65

3050 IF INKEY$="7" THEN LET r=r-1 70 FOR m=1 TO 100

3060 IF INKEYS="6" THEN LET r=r+1 80 GO SUB 2000 : REM Shuffle word
3070 IF r<® THEN LET r=@ i 100 PRINT j$
3080 IF r>20 THEN LET r=20 4 110 LET a$=c$
3090 RETURN 120 NEXT m

130
190 STOP
200

1990 REM Shuffle word
Quacman Improved (Notes) Samm Let ;gan" ¥

1—3 These three lines provide a crude timecounter. Each time that the ‘move 2010 FOR k=1 to LEN c$
; Op, aM eR: 2020 LET L=LEN a$

racer’ subroutine is executed, ‘timecount’ is increased by 1. The final value 2030 LET n=INT CRND*L) +1
of ‘timecount’ is displayed when you get through the maze. 2040 LET j$=j$ta$(n)

(Providing an accurate clock on the ZX Spectrum is very difficult and uses sate wees fe 87) eee intl 10 2

advanced programming techniques.) 2070 RETURN

4. These two lines make sure that the Quacman doesn’t jump out of the top or

24

MATCH (ONE PLAYER)

1@ REM MATCH
20 REM © Fred Harris

bottom of the maze. The technique used here is a common trick in program-

ming:

IF <variable exceeds limit> THEN <variable = limit>

25

— a8 —2§ -2§ 2) -2 2 2 = = = = -) 2) > > 2 =) —) OO WWONAUUUEWNPND = & MViBUINSoseovFtoesgqugourFrosescu

200

eal a eal ocd dad acl aa ch ch, tod eel ed ed od od mR = = - a See egesgsds

Oo S

AURWN- Bs 0 Seseccqsessvi8S

NO ie)

REM ONE PLAYER VERSION

REM Initialise
GO SUB 1000

REM Choose first card
GO SUB 2000
LET firstguess=i
REM Show card
GO SUB 3000

REM Choose second card
GO SUB 2000 -o
IF 1=firstguess THEN GO TO 140
REM Show card
GO SUB 3000

LET ni=n LET m1=m

LET guess=guesst1

PAUSE 5@

REM Check for match
GO SUB 4000
REM Match action ——6)
IF match=1 THEN GO SUB 5008——‘Y”
REM No match action
IF match=@ THEN GO SUB 6000

PRINT AT 19,8;"TRIES:"; guess
PRINT AT 20,8;"SCORE:";score
IF score<1@ THEN GO TO 110
PEED? .35 0: . GEER .5,4: GEEP «57s; SEEP A212

STOP
REM **¥*¥*¥*¥kKkKk END KR®¥RKRKKKKKK

REM KEK KKKKKKKKKKKKKKKKKEKE

REM **xxx*x SUBROUTINES ****

REM Initialise routine
BORDER 5

LET guess=0
LET score=0
LET a$=""AABBCCDDEEFFGGHHIIJJ" (1)

LET J$=""

REM Shuffle
FOR k=1 TO 20

LET L=LEN a$

LET n=INT CRND¥*¥L)+1

LET j$=j$ta$ Cn)

LET a$S=a$(TO n-1)t+a$(n+1 TO)
NEXT k

REM Display backs
FOR n=0 TO 4

FOR m=0 TO 3

PRINT AT 3*m+5,3*n+8;n+5*m+1
NEXT m

70 NEXT n
8@ RETURN
8

2@00 INPUT i
2010 LET 1=INT

90 REM Choose a card

2020 IF i <1 OR. i>20 THEN BEEP 1,-10:G60 TO 2000——@
GO TO 2000—@ 2030 IF jsci)="—" THEN BEEP

2040 LET m=INT ((€1-1)/5)
2050 LET n=i-5*m-1
2@70 RETURN
2080
2998 REM Showcard
3000 IF j$Ci)="A" THEN LET x$="ellle": LET y$="00":
3010 IF j$€1)="B" THEN LET x$="Me'': LET y$=""ar"':
3020 IF j$Ci)="C" THEN LET x$=" fe": LET y$=""':

3636 IF 3$Ci)="D"..THEN LET x$e"/\"2: LET y$="\ 7"
3040 IF j$Ci)="E" THEN LET x$="Sie"': LET y$="Su"':

3050 IF j$Ci)="F" THEN LET x$="": LET y$="'':
3060 IF j$Ci)="G" THEN LET x$="%*%"=: LET y$Sa"xx":

3070 IF j$Ci)J="H" THEN LET x$="Gi": LET y$='"tia"':

3080 IF j$Ci)="I" THEN LET x$="F9"': LET y$="el"' -

3090 IF j$Ci)="J" THEN LET x$="9NM": LET y$="0N"':

- 1 aioe:

3100 PRINT INK colour;AT 3*m+5,3*n+8;x$
3110 PRINT INK colour;AT 3*m+6, 3aN+8;y$
3120 RETURN

3990 REM Check for match
4000 LET match=0

LET
LET
LET
LET
cer
LET
LET
Ley
LET
LET

4010 IF j$(firstguess)=j$(i) THEN LET match=1————@®)
4020 RETURN

4990 REM
5000 LET
5010 LET
5@20 LET
5@30 FOR

Match action
j$(firstguess)="—
j$Ci)="—
score=scorett
Z=12 TO 24

5040 BEEP ..03,2z
5050 NEXT z
5060 RETURN

5990 REM No match action
6000 FOR z=12 TO @ STEP -1

6010 BEEP .063,z
6020 NEXT z

6030 BEEP 1,-20

PRINT AT 2a t*3.,5*n1+8;: firstguess,; Pe
PRINT AT 3*m1+6,3*n1+8;
PRINT AT 3*m+5 ,oent8sae" ::
PRINT AT 3xm+6,3*n+B." r
RETURN

Match (One Player) — Notes

4

Y

These are the labels for the cards before they are shuffled.

The input routine has to be fairly complex because it has to do three things:

27

2a. Ensure that the entered number is a whole number. INT cuts any decimal

number down to the whole number below it. e.g. INT 2.3 is 2.

2b. Make sure that the whole number is between 1 and 20.

2c. Make sure that the card chosen has not already been paired-up.

x Notice that lines 140 and 150 are also checking the input since we have to

ensure that the second card choice is not the same as the first.

4—7 Flags are used for sending information from one part of a program to another.

Here the flag ‘match’ is set to 0 before we check for a match. If a match is

found, ‘match’ is set to 1. ‘match’ is then used to direct the program to the

right choice of subroutine.

8. This is the line where the program checks for a match. Remember that the

computer doesn’t care about the pictures.

The maths of this program may look rather complex but it’s all designed to keep

the programming simple. The cards are in five rows and four columns:

COLUMN

Row

The rows are numbered O to 4 and use the variable ‘m’ in the program. The

columns are numbered 0 to 3 and use the variable ‘n’ in the program.

When the player picks a card (line 2000), lines 2040 and 2050 work out the

values of m andn.

Later, lines 3100 and 3110 work out where to print the card on the screen. (At

(3*m+5, 3*n+8) for the top half and at (3*m+6, 3*n+8) for the bottom half.)

And finally, if a pair of cards have to be wiped out and replaced with their

numbers, then this is done by lines 6040 and 6060 (replace the numbers) and by

lines 6050 and 6070 (wipe out the lower parts of the cards).

Suggestions for improvement

See Electron list.

FIND THE NUMBERS

10 REM FIND THE NUMBERS
2@ REM © Fred Harris

40 REM Initialise
5®@ GO SUB 1000

eS Ee ee ee ee i OONAARAURWN-—& Se eves cesacscsd

REM Shuffle number
GO SUB 2000

LET m$=j$C TO 4)

REM Instructions
GO SUB 3000

REM Repeat until correct

LET ok=0<——1))
REM Enter guess
GO SUB 4000

REM Mark guess
GO SUB 5000

If ok=@ THEN GO TO 180

REM Result
GO SUB 6000

STOP

REM xxkxkkkkkk END Kk¥kRKKKKKK

REM **x***x*x SUBROUTINES ***

REM Initialise
LET guess=0
LET a$="1234567899'!
LET c$=a$
i

RETURN

REM Shuffle
LET ige”

FOR k=1 TO LEN c$

LET lL=LEN a$

LET n=INT CRND*L) +1

LET j$=j$ta$(n)
LET a$=a$ (TO n-1)+a$(nt+1TO)
NEXT k

RETURN

REM Instructions
PRINT "YOU MUST GUESS THE CODE BY"

PRINT "ENTERING A FOUR DIGIT NUMBER"

PRINT "(@ TO 9)"

PRINT : PRINT "I WILL MARK AS FOLLOWS:"

PRINT "* MEANS A NUMBER IN WRONG PLACE"

PRINT "+ MEANS A NUMBER IN RIGHT PLACE"

PRINT AT 15,@;"PRESS A KEY WHEN YOU ARE READY."
PAUSE 500

CLS
RETURN

399@ REM Enter guess
4000 INPUT g$
4010 IF LEN g$<>4 THEN PRINT AT 0,0;"A FOUR DIGIT NUMBER"

PAUSE 40: PRINT AT 0,0;" ": GO TO 4000
4020 LET guess=guesstt
4030 PRINT AT 2+guess,6;g$
4040 PRINT AT 2+guess,15;
4050 RETURN
4060
4990 REM Mark
5000 FOR n=1 TO 4
5010 IF g$(n)=m$(n) THEN PRINT "+"; ———Q)
5020 NEXT n
5030 PRINT AT 2+guess,19;
5040 FOR n=1 TO 4
5050 FOR m=1 TO 4
5060 IF g$(n)=m$(m) AND n<>m THEN PRINT "*";——@) |--@)
5070 NEXT m
5080 NEXT n
5090 IF g$=m$ THEN LET ok=1
5100 RETURN
5110
5900 REM Result
6000 FOR n=1 TO 15
6010 BEEP: .83,n
6020 NEXT n
6030 PRINT AT 20,0;"GOT IT IN "; guess
6040 RETURN

Find the Numbers (Notes)

1. ‘ok’ is a flag. As long as ok is 0, the enter guess/mark guess loop is repeated.

But if the player gets the right answer, the mark routine sets ok to 1 (line

5090). This then allows exit from the loop at line 230.

2—4 The marking routine is a bit tricky.

First (2) we have to print a ‘+’ for each correct digit in the correct place in

the guess.

Then (3) we have to search for correct digits in incorrect places and print a

‘*" each time we find one. Notice ‘ANDn<>m/’ (4) which makes sure that we

don’t print a ‘*’ where a correct digit is in its correct place.

SPECTRUM STRINGS

An odd feature of the Spectrum computer is that it does not distinguish between

string variables in upper case and lower case. So, to the Spectrum, B$ is the same

variable as b$. As a result, the Spectrum only has 26 string variables, A$, B$,
Carma rt Z$ (or, if you like, a$, b$, c$,..... z$).This restriction prevents you
from using meaningful string names (e.g. name$) as you can on the Electron. (There

is nO apparent reason for this, except that the Spectrum developed out of the ZX81

computer which also had very limited string store facilities.)

30

REPEAT

BBC BASIC, along with other advanced programming languages provides a

REPEAT. . . UNTIL facility. Spectrum BASIC does not provide REPEAT, but it
can be simulated.

First, look at how REPEAT. ..UNTIL works. It is used to make a program repeat

a section of code until an exit condition is met. A common application is to ensure

that only valid information is entered at the keyboard.

REPEAT

INPUT “Enter a number from 1 to 3’ num

UNTIL num>=1 AND num<=3

This will ensure that the program will not exit from the loop until you enter

an appropriate number.

To simulate this in Spectrum BASIC, you can use a FOR... NEXT... loop and

then interfere with the loop counter. The following loop

FOR i=OTOT1

LETi=0 reset the loop counter to

force the loop to be repeated.

INPUT ‘‘Enter a number from 1 to 3’’ num

If num > =1 AND num <=3 THEN LET i=1 If the exit condition is met,

set the loop counter to its

NEXT i exit value.

behaves in exactly the same way as the genuine REPEAT loop above.

31

ADDRESSES

Commodore Business Machines UK Ltd

(Commodore Information Centre)

675 Ajax Avenue

Slough

Berks

Tel: (0753) 79292

Apple Computers UK Ltd

Eastman

Hemel Hempstead

Herts

Tel: (0442) 60244

Oric Products International Ltd

Coworth Park Mansion

Coworth Park

London Road

Sunninghill

Ascot

Berks

Tel: (0990) 27686

Oric Assembly

Unit 11

Hampton Farm Industrial Estate

Hampton Road West

Hanworth

Middx.

Tel: (01) 755 1133

BOOKS

Dragon Data Ltd

The Kenfig Industrial Estate

Margam

Port Talbot

West Glam.

Tel: (0656) 744700

Acorn Computers Ltd

Fulbourn Road

Cherry Hinton

Cambridge

CB1 4JN

Tel: (0223) 245200

Sinclair Research Ltd

28 Stanhope Road

Camberley

Surrey

Tel: (0276) 686161

Special Offer

Me & My Micro

Available on video cassette as well!

Complete series of all five programmes for only £29.95
This includes VAT, P + P — VHS or Betamax

Write to:

Geoff Foster
Yorkshire Television Ltd

Leeds LS3 1JS

Please enclose a cheque payable to:

Yorkshire Television Enterprises Ltd

Don’t forget to state VHS or Betamax

Allow 28 days for delivery

The programs in this leaflet are developed in more detail in:
Paul Shreeve, Me & My Micro (National Extension College).

Asimple approach to structured programming (the methods used here and inthe
TV series) can be found in:
Richard Freeman, Step by Step BASIC (BBC/Electron edition) (Lifelong Learning Software based on games featured in ‘Me & My Micro” is available
Ltd) for Electron/BBC and Spectrum micros, £9.95 each from all good

Richard Freeman, Step by Step BASIC (ZX Spectrum edition) (Lifelong Learning stockists
Ltd)

A more advanced course on structured programming can be found in:
Richard Freeman, Structured BASIC (BBC/NEC)

32

